Resistance to mecillinam and nine other antibiotics for oral use in Escherichia coli isolated from urine specimens of primary care patients in Germany, 2019/2020

<u>M Kresken ^{1,2}</u>, Y Pfeifer ³, F Wagenlehner ⁴, G Werner ³, E Wohlfarth ¹

¹Antiinfectives Intelligence GmbH, Cologne, Germany; ²University of Applied Sciences, Cologne, Germany; ³Robert Koch Institute, FG13 Nosocomial Pathogens and Antibiotic Resistances, Wernigerode Branch, Wernigerode, Germany; ⁴Clinic for Urology, Pediatric Urology and Andrology, Justus-Liebig-University Gießen, Gießen, Germany

Third party affiliation:

Study Group 'Antimicrobial Resistance' of the Paul-Ehrlich-Society for Chemotherapy

Disclosures

- The authors declare the following real or perceived conflicts of interest during the last 3 years in relation to this presentation: _ MK is a partner and CEO of Antiinfectives Intelligence GmbH (AI), a research organisation providing services to pharmaceutical companies; EW is an employee of AI.
- This study was funded by Apogepha Arzneimittel GmbH.

32nd European Congress of Clinical Microbiology & Infectious Diseases (ECCMID) 23-26 April 2022; Hybrid Meeting; Lisbon, Portugal and Virtual

Resistance to mecillinam and nine other antibiotics for oral use in *Escherichia coli* isolated from urine specimens of primary care patients in Germany, 2019/2020

M Kresken ^{1,2}, Y Pfeifer ³, F Wagenlehner ⁴, G Werner ³, E Wohlfarth ¹

¹Antiinfectives Intelligence GmbH, Cologne, Germany; ²University of Applied Sciences, Cologne, Germany; ³Robert Koch-Institute, FG13 Nosocomial Pathogens and Antibiotic Resistances, Wernigerode Branch, Wernigerode, Germany; ⁴Clinic for Urology, Pediatric Urology and Andrology, Justus-Liebig-University Gießen, Gießen, Germany, Study Group "Antimicrobial Resistance" of the Paul-Ehrlich-Society for Chemotherapy

Background

Urinary tract infections (UTIs) are among the most common bacterial infections in humans. *Escherichia coli* is the leading cause of community acquired UTI.¹

Pivmecillinam, the oral prodrug of the penicillin derivative mecillinam (amdinocillin), was re-introduced in Germany in March 2016.

This study aimed to evaluate the prevalence of resistance to mecillinam in comparison to nine other antibiotics used for oral treatment in *E. co*li urine isolates after the re-introduction of pivmecillinam for first-line treatment of uncomplicated lower UTI.

Methods

Isolates were collected prospectively at 23 laboratories between October 2019 and March 2020. Verification of species identification and susceptibility testing were performed at a reference laboratory.

MICs were determined by either agar dilution (mecillinam) or broth microdilution (amoxicillin, amoxicillin-clavulanic acid, cefuroxime, cefpodoxime, cefixime, ciprofloxacin, trimethoprim-sulfamethoxazole, fosfomycin, nitrofurantoin), and interpreted by EUCAST criteria (v.12.0).²

Isolates with a confirmed extended-spectrum beta-lactamase (ESBL) phenotype were screened for presence of beta-lactamase genes by PCR.³

Results

A total of 460 isolates were collected. Forty-six isolates (10.0%) produced an ESBL of the CTX-M family, 25 of which also harboured one or more other beta-lactamase gene.

Of the 460 isolates, 49.1% were fully susceptible to all antimicrobials. Sixtyseven isolates (14.6%) were resistant to one drug class, 70 (15.2%) to two drug classes and 97 isolates (21.1%) to more than two drug classes. Resistance to amoxicillin was most widespread, followed by resistance to trimethoprim-sulfamethoxazole, amoxicillinclavulanic acid, and cefuroxime, and least widespread to fosfomycin, nitrofurantoin and mecillinam (**Table**). Resistance to mecillinam was detected in 24 isolates (5.2 %). The concentrations of mecillinam needed to inhibit 50 / 90 % of the ESBL producing isolates and the remaining isolates were 1 / 4 mg/L, and 0.5 / 4 mg/L, respectively. All but one mecillinamresistant isolates showed cross-resistance to amoxicillin and amoxicillin-clavulanic acid.

Conlusions

Overall, the degree of resistance to oral antibiotics in uropathogenic *E. coli* from outpatients seems to be favorable. The frequency of resistance to individual drugs, however, varied.

Resistance rates were below 10% for fosfomycin, nitrofurantoin and mecillinam, all of which are recommended for first-line treatment of uncomplicated lower UTI by international guidelines.

References

Naber KG et al., Eur Urol 2008;54(5):1164-75 The European Committee on Antimicrobial Susceptibility Testing (EUCAST). 2022. Breakpoint tables for interpretation of MICs and zone diameters, Version 12.0 Schuster CF et al., J Antimicrob Chemother 2021; https://doi.org/10.1093/jac/dkab407

Disclosures

MK is a partner and CEO of Antiinfectives Intelligence GmbH a research organisation providing services to pharmaceutical companies; E.W. is an employee at Antiinfectives Intelligence GmbH.

This study was funded by Apogepha Arzneimittel GmbH.

Table: In-vitro activity of ten oral antibiotics against urinary E. coli isolates (n=460)

Antibacterial	Breakpoint	MIC-50	MIC-90	Percent of isolates		
agent	(mg/L) ¹	(mg/L)	(mg/L)	S	l I	R
Amoxicillin	> 8	4	≥ 64	56.7	-	43.3
Amoxicillin- clavulanic acid	> 8	4	16	82.0	-	18.0
Mecillinam	> 8	0.5	4	94.8	-	5.2
Cefuroxime	> 8	4	≥ 64	88.7	-	11.3
Cefixime	> 1	0.25	4	89.3	-	10.7
Cefpodoxime	> 1	0.5	≥ 8	88.9	-	11.1
Ciprofloxacin	> 0.5	≤ 0.06	8	86.3	2.6	11.1
Trimethoprim- sulfamethoxazole	> 4	≤ 0.25	≥ 32	72.2	0.9	27.0
Fosfomycin ²	> 8	2	8	92.6	-	7.4
Nitrofurantoin	> 64	≤ 16	32	98.9	-	1.1

S (susceptible at standard dose), I (susceptible at increased exposure), R, resistant. ¹ EUCAST breakpoints for orally administered antibiotics. ² Resistance was confirmed by agar dilution.

Presentation #526, Session: 3b. Resistance surveillance & epidemiology: Gram-negatives 32nd European Congress of Clinical Microbiology & Infectious Diseases (ECCMID); 23–26 April 2022; Hybrid Meeting; Lisbon, Portugal and Virtual

Background & Methods

- Urinary tract infections (UTIs) are among the most common bacterial infections in humans.
- Escherichia coli is the leading cause of community acquired UTI. —
- Pivmecillinam, the oral prodrug of the penicillin derivative mecillinam (amdinocillin), was re-introduced in Germany in ____ March 2016.
- This study aimed to evaluate the prevalence of resistance to mecillinam in comparison to nine other antibiotics used for ____ oral treatment in *E. coli* urine isolates after the re-introduction of pivmecillinam for first-line treatment of uncomplicated lower UTI.
- Isolates were collected prospectively at 23 laboratories between October 2019 and March 2020. -----
- Verification of species identification and susceptibility testing were performed at a reference laboratory. -----
- MICs were determined by either agar dilution (mecillinam) or broth microdilution (amoxicillin, amoxicillin-clavulanic acid, ----cefuroxime, cefpodoxime, cefixime, ciprofloxacin, trimethoprim-sulfamethoxazole, fosfomycin, nitrofurantoin).
- EUCAST criteria (v.12.0) were applied for interpretation.
- Isolates with a confirmed extended-spectrum beta-lactamase (ESBL) phenotype were screened for presence of beta-____ lactamase genes by PCR.

32nd European Congress of Clinical Microbiology & Infectious Diseases (ECCMID) 23-26 April 2022; Hybrid Meeting; Lisbon, Portugal and Virtual

Results & Conclusions

Antibacterial agent	Breakpoint (mg/L) ¹	MIC-50 (mg/L)	MIC-90 (mg/L)	Percent of isolates			 ESBL producing isolates 	
				S	l.	R	• 10 % (n=46): all CTX-M f	
Amoxicillin	> 8	4	≥ 64	56.7	-	43.3	 One or more additional b 	
Amoxicillin- clavulanic acid	> 8	4	16	82.0	-	18.0	 Antimicrobial susceptibility Fully susceptible to all an 	
Mecillinam	> 8	0.5	4	94.8	-	5.2	Resistant to one drug claResistant to two drug classical	
Cefuroxime	> 8	4	≥ 64	88.7	-	11.3	 Resistant to more than tw 	
Cefixime	> 1	0.25	4	89.3	-	10.7	 <u>Most widespread</u>: resista 	
Cefpodoxime	> 1	0.5	≥ 8	88.9	-	11.1	trimethoprim-sulfamethox cefuroxime	
Ciprofloxacin	> 0.5	≤ 0.06	8	86.3	2.6	11.1	 <u>Least widespread</u>: resistant 	
Trimethoprim- sulfamethoxazole	> 4	≤ 0.25	≥ 32	72.2	0.9	27.0	mecillinamMecillinam-resistant: 5.2	
Fosfomycin ²	> 8	2	8	92.6	-	7.4	MIC 50 / 90 % of mecillina	
Nitrofurantoin	> 64	≤ 16	32	98.9	-	1.1	 MIC 50 / 90 % of mecillina All but one mecillinam-res 	

Table: In-vitro activity of ten oral antibiotics against urinary E. coli isolates (n=460)

S (susceptible at standard dose), I (susceptible at increased exposure), R, resistant.

¹ EUCAST breakpoints for orally administered antibiotics. ² Resistance was confirmed by agar dilution.

Overall, the degree of resistance to oral antibiotics in uropathogenic *E. coli* from outpatients seems to be favorable. The frequency of resistance to individual drugs, however, varied. Resistance rates were below 10% for fosfomycin, nitrofurantoin and mecillinam, all of which are recommended for first-line treatment of uncomplicated lower UTI by international guidelines.

• 10 % (n=46): all CTX-M family • One or more additional beta-lactamase (n=25)

- Antimicrobial susceptibility of the isolates • Fully susceptible to all antimicrobials: 49.1% • Resistant to one drug class: 14.6% (n=76) Resistant to two drug classes: 15.2% (n=70) • Resistant to more than two drug classes: 21.1% (n=97) • Most widespread: resistance to amoxicillin, followed by resistance to trimethoprim-sulfamethoxazole, amoxicillin-clavulanic acid, and

· Least widespread: resistance to fosfomycin, nitrofurantoin and

• Mecillinam-resistant: 5.2 % (n=24) • MIC 50 / 90 % of mecillinam for ESBL producing isolates: 1 / 4 mg/L • MIC 50 / 90 % of mecillinam for remaining isolates: 0.5 / 4 mg/L All but one mecillinam-resistant isolates showed cross-resistance to amoxicillin and amoxicillin-clavulanic acid.

32nd European Congress of Clinical Microbiology & Infectious Diseases (ECCMID) 23-26 April 2022; Hybrid Meeting; Lisbon, Portugal and Virtual