





# Antibiotic resistance in *Haemophilus influenzae* isolates obtained from patients at outpatient departments in Germany, 2019/2020

Thiên-Trí Lâm, Esther Wohlfarth\*, Heike Claus, Ulrich Vogel, Michael Kresken\*

Reference laboratory for meningococci and *Haemophilus influenzae* (NRZMHi)

Institute for Hygiene and Microbiology

University of Würzburg

\*Antiinfectives Intelligence GmbH, Cologne, Germany

Transparency Declaration: no conflicts of interest



## Laboratory-based surveillance study

#### Study design

- Collection of up to 10 non-duplicated Haemophilus influenzae isolates known or suspected to have caused an ENT infection
- 23 laboratories across Germany
- 6 months (from Oct 2019 until Mar 2020)

#### Objectives

- to provide data on the antimicrobial susceptibility of Haemophilus influenzae to oral antibiotics
- to study the genetic background of resistances to β-lactam antibiotics and ciprofloxacin



## Antimicrobial susceptibility (n=213 isolates)

- 132 (62.0%) fully susceptible isolates to all antibiotics tested
- 34 (16.0%) trimethoprim-sulfamethoxazole-resistant isolates
- 30 (14.1%) amoxicillin-resistant isolates
  - 1 β-Lactamase-Negative and Amoxicillin-Resistant isolate (BLNAR)
  - 1 β-Lactamase-Positive and Amoxicillin-Clavulanic acid Resistant isolate (BLPACR)
  - 28 β-Lactamase Positive and Amoxicillin Resistant isolates but amoxicillin-clavulanic acid susceptible (BLPAR; TEM-type)
- 9 (4.2%) imipenem-resistant isolates
- 7 (3.3%) cefixime- and cefpodoxime-resistant isolates
- 4 (1.9%) ciprofloxacin-resistant isolates
- No resistance to doxycycline



### Resistance mechanisms

- Resistance to β-lactam antibiotics (n=67)
  - 29 isolates with β-lactamase (all *bla*<sub>TEM</sub>)
  - Sequencing of ftsl encoding the penicillin-binding protein 3 (PBP3)
    - 33 isolates with PBP3 substitutions

| Resistance profile (n)    |    | No. of isolates with PBP3 substitutions | PBP3 group (n)                          |
|---------------------------|----|-----------------------------------------|-----------------------------------------|
| AMX, AMC, CXM, CPP, CFI ( | 1) | 1                                       | +                                       |
| AMX, CXM, CPP, CFI, T/S ( | )  | 1                                       | III-like                                |
| AMX, CXM, CPP, CFI (2     | 2) | 2                                       | IIa, III-like+                          |
| CXM, CPP, CFI, T/S (3     | 3) | 3                                       | III, III-like (2)                       |
| CXM (1                    | 7) | 14                                      | Ila (5), Ilb (2), Ilc, Ild (2), III (3) |
| CXM, CIP (                | 1) | 1                                       | lla                                     |
| CXM, CIP, T/S (2          | 2) | 2                                       | lla (2)                                 |
| CXM, IMP (3               | 3) | 3                                       | IIb (2), III                            |
| CXM, IMP, T/S (           | 5) | 4                                       | IIa, IIc, IId, III                      |
| CXM, T/S (4               | ŀ) | 2                                       | Ild, III                                |

| PBP3 group | PBP substitution   |  |
|------------|--------------------|--|
| I          | Arg <b>517</b> His |  |
| II         | Asn <b>526</b> Lys |  |
| III        | Ser <b>385</b> Thr |  |

AMX, amoxicillin; AMC, amoxicillin-clavulanic acid; CXM, cefuroxime; CPP, cefpodoxime; CFI, cefixime; IMP, imipenem

- Resistance to ciprofloxacin (n=4)
  - Characteristic mutations in gyrA and parC (n=3)



## Summary

- Majority of isolates was fully susceptible (62.0%)
- Highest relative resistance rate was found to trimethoprim/sulfamethoxazol (16.0%)
- Resistance rates and mechanisms are comparable to those in invasive isolates (data not shown)