

Session: 3b. Resistance surveillance and epidemiology: Gram-negatives Presentation Number: 60

Please access this presentation by scanning the QR code or via https://tago.ca/eccmid-8

In vitro activity of gepotidacin against urine isolates of Escherichia coli from outpatient departments in Germany

<u>M Kresken^{1,2}</u>, E Wohlfarth¹, C Weikel³, D Butler³, Y Pfeifer⁴, G Werner⁴, Study Group "Antimicrobial Resistance" of the Paul-Ehrlich-Society for Chemotherapy

¹Antiinfectives Intelligence GmbH, Cologne, Germany; ²University of Applied Sciences, Cologne, Germany; ³GlaxoSmithKline plc., Collegeville, PA, USA; ⁴Robert Koch-Institute, FG13 Nosocomial Pathogens and Antibiotic Resistances, Wernigerode Branch, Wernigerode, Germany

Disclosures

- The authors declare the following real or perceived conflicts of interest during the last 3 years in relation to this presentation: _ MK is a partner and CEO of Antiinfectives Intelligence GmbH (AI), a research organisation providing services to pharmaceutical companies; EW is an employee of AI.
- This study was funded by GlaxoSmithKline plc.

32nd European Congress of Clinical Microbiology & Infectious Diseases (ECCMID) 23-26 April 2022 | Hybrid Meeting | Lisbon, Portugal and Virtual

F

∃ × i □

In vitro activity of gepotidacin against urine isolates of *Escherichia coli* from outpatient departments in Germany

M. Kresken ^{1, 2}, E. Wohlfarth ¹, C. Weikel ³, D. Butler ³, Y. Pfeifer ⁴, G. Werner ⁴

¹Antiinfectives Intelligence GmbH - Cologne (Germany), ²Univeristy of Applied Sciences - Cologne (Germany), ³ GlaxoSmithKline - Collegeville, PA (USA), ⁴Robert Koch-Institute, FG13 Nosocomial Pathogens and Antibiotic Resistances, Wernigerode Branch - Wernigerode (Germany)

<u>Third party affiliation:</u> Study Group "Antimicrobial Resistan

Study Group "Antimicrobial Resistance" of the Paul-Ehrlich-Society for Chemotherapy

Introduction

- Escherichia coli is the leading causative pathogen of community-acquired urinary tract infections (UTI).¹
- The management of UTI in the community is empiric in most cases but acquired antimicrobial resistance in *E. coli* has complicated effective treatments.²
- Gepotidacin (GEP), a first in class triazaacenaphthylene antibacterial targeting both bacterial DNA gyrase and topoisomerase IV by a different mechanism from fluoroquinolone (FQ) antibiotics, is currently in Phase 3 clinical development for the treatment of gonorrhoea and uncomplicated urinary tract infections (UTI) and represents a promising drug for oral treatment of acute uncomplicated UTI.^{3, 4}
- The purpose of this study was to evaluate the *in vitro* activity of gepotidacin in comparison to ciprofloxacin against a collection of German *E. coli* isolates from urine.

Methods

- A total of 460 *E. coli* isolates collected at 23 laboratories during a laboratory surveillance study conducted by the Paul Ehrlich Society in 2019/20 were studied.
- Susceptibility testing was performed at a reference laboratory by the broth microdilution method according to ISO 20776-1.
- EUCAST breakpoints (v.12.0) were applied to interpret the ciprofloxacin MICs. Preliminary breakpoints for gepotidacin have not been defined yet.
- Production of extended-spectrum β-lactamases (ESBLs) was detected by broth microdilution (EUCAST) and confirmed by PCR.

- Overall, MIC_{50/90}s were 2/4 mg/L for gepotidacin and 0.016/>2 mg/L for ciprofloxacin (Table 1).
- The gepotidacin concentrations required to inhibit 50% and 90% of the ESBL-producing and ciprofloxacin-resistant isolates were also 2 and 4 mg/L, respectively (Table 1).

Gepotidacin showed promising *in vitro* activity against *E. coli* urine isolates, including ESBL-producing and ciprofloxacin-resistant isolates.

Table 1 MIC distributions of gepotidacin and ciprofloxacin against *E. coli* isolates from urine

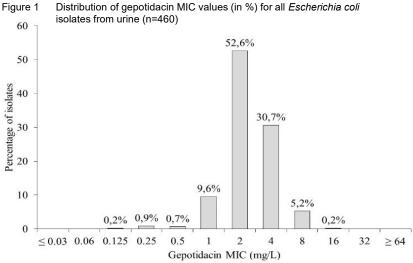
				51					Ŭ							
Phenotype/ Drug	MIC [mg/L]															
	≤0.002	0.004	0.008	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	≥32	%R
All (n=460)																
Gepotidacin							1	4	3	44	<u>242</u>	<u>141</u>	24	1		_1
Ciprofloxacin	1	6	46	<u>243</u>	50	7	9	30	15	2		<u>51</u>				11.5
ESBL-negative (n=414)																
Gepotidacin							1	2	3	39	<u>217</u>	<u>129</u>	22	1		_1
Ciprofloxacin	1	6	46	<u>235</u>	48	6	9	<u>25</u>	10	2		26				6.8
ESBL-positive (n=46)																
Gepotidacin								2		5	<u>25</u>	<u>12</u>	2			_1
Ciprofloxacin				8	2	1		5	5			<u>25</u>				54.3
Cirofloxacin (S+I; n=407)																
Gepotidacin							1	2	2	37	<u>218</u>	<u>125</u>	21	1		_1
Ciprofloxacin (R; n=53)																
Gepotidacin								2	1	7	<u>24</u>	<u>16</u>	3			_1

S+I, isolates classified as S (susceptible at standard dose) or I (susceptible at increased exposure); R, resistant isolates; %R, percentage of resistant isolates. The underlined numbers indicate the MIC50/90 values. Numbers in bold include isolates with MIC < value shown; numbers in italic include isolates with MIC > the highest concentration tested. The solid vertical lines indicate the EUCAST breakpoint defined for ciprofloxacin resistance. ¹No EUCAST breakpoint defined.

Presentation #60, Session: 3b. Resistance surveillance & epidemiology: Gram-negatives 32nd European Congress of Clinical Microbiology & Infectious Diseases (ECCMID) 23–26 April 2022 Hybrid Meeting | Lisbon, Portugal and Virtual

> Please find the online version of this poster and accompanying audio by scanning the QR code or via <u>https://tago.ca/eccmid-8</u>

Results



Three hundred and ninety-three (85.4%) and 67 (14.6%) isolates were obtained from female and male patients, respectively. Median (interquartile range) patients' age was 63 (45–78) years.

Forty-six isolates (10.0%) produced an ESBL (CTX-M-type), 25 of which also produced other β -lactamases (TEM [n=12], DHA [n=1], OXA-1 [n=10], OXA-244 [n=2]). Thirty, 15 and 1 isolates were positive for CTX-M group 1, CTX-M group 9 and CTX-M group 8, respectively.

Two isolates were AmpC producers only, with CMY and DHA. Fifty-three (11.5%) isolates were ciprofloxacin-resistant, 25 (47.2%) of which also produced an ESBL.

Nineteen and four ESBL-producing isolates belonged to the O25b-ST131 and O16-ST131 subgroup, respectively.

 Unimodal frequency distribution of gepotidacin MIC values (all *E. coli* isolates, n=460). MICs ranged from 0.125 – 16 mg/L with a mode of 2 mg/L.

Conclusions

Gepotidacin showed promising *in vitro* activity against *E. coli* isolates from urine, including ESBL-producing and ciprofloxacin-resistant isolates.

References

1. Stamm WE et al., J Infect Dis. 2001;183 (Suppl 1)

 Kahlmeter G and Poulsen HO, Int. J. Antimicrob. Agents. 2012; 39: 45–51
Overcash JS et al., Antimicrob Agents Chemother. 2020; 64: e00199-20
ClinicalTrials.gov Identifiers:

NCT04020341 and NCT04187144

Disclosures

MK is a partner and CEO of Antiinfectives Intelligence GmbH a research organisation providing services to pharmaceutical companies; E.W. is an employee at Antiinfectives Intelligence GmbH. This study was funded by GlaxoSmithKline plc.

Background and Methods

- Gepotidacin (GEP): Gepotidacin is a novel, first-in-class triazaacenaphthylene antibiotic
 - Inhibits bacterial DNA replication by a distinct mechanism of action, which confers activity against most strains of target pathogens, such as Ο Escherichia coli, Staphylococcus saprophyticus, and Neisseria gonorrhoeae, including those resistant to current antibiotics
 - In Phase 3 clinical development: treatment of *Neisseria gonorrhoeae* and uncomplicated urinary tract infections (UTI) Ο
- E. coli isolates (n=460)
 - Collected at 23 laboratories during a laboratory surveillance study conducted by the Paul Ehrlich Society in 2019/20 Ο
 - Susceptibility testing: broth microdilution method (ISO 20776-1) Ο
 - MIC interpretation of ciprofloxacin: EUCAST breakpoints (v.12.0) Ο
 - MIC interpretation of gepotidacin: No MIC breakpoints or interpretive criteria are currently available Ο
- Characterization of isolates with production of extended-spectrum β -lactamases (ESBLs)
 - Identified via broth microdilution (EUCAST) 0
 - Confirmed by PCR detection of β-lactamase genes encoding TEM, SHV, CTX-M, DHA, CMY, OXA-48, VIM, KPC Ο
 - PCR-based determination of sequence type subgroups ST131-O25b and ST131-O16 (Johnson et al. 2014, J Clin Microbiol;52(5):1358-65) Ο

32nd European Congress of Clinical Microbiology & Infectious Diseases (ECCMID) 23-26 April 2022 | Hybrid Meeting | Lisbon, Portugal and Virtual

Results and Conclusions

Table 1: MIC distributions of gepotidacin and ciprofloxacin against <i>E. coli</i> isolates from urine Phenotype/																
Phenotype/ Drug	≤0.002	0.004	0.008	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	≥32	%R
All (n=460)																
Gepotidacin							1	4	3	44	<u>242</u>	<u>141</u>	24	1		_1
Ciprofloxacir	1 1	6	46	<u>243</u>	50	7	9	30	15	2		<u>51</u>				11.5
ESBL-negativ	/e (n=41	L 4)														
Gepotidacin	·	-					1	2	3	39	<u>217</u>	<u>129</u>	22	1		_1
Ciprofloxacir	1 1	6	46	<u>235</u>	48	6	9	<u>25</u>	10	2		26				6.8
ESBL-positiv	e (n=46))														
Gepotidacin								2		5	<u>25</u>	<u>12</u>	2			_1
Ciprofloxacir	ı			8	2	1		5	5			<u>25</u>				54.3
Cirofloxacin	(S+I; n=	407)														
Gepotidacin							1	2	2	37	<u>218</u>	<u>125</u>	21	1		_1
Ciprofloxaci	n (R; n=	53)														
Gepotidacin								2	1	7	<u>24</u>	<u>16</u>	3			_1

S+I, isolates classified as S (susceptible at standard dose) or I (susceptible at increased exposure); R, resistant isolates; %R, percentage of resistant isolates. The underlined numbers indicate the MIC50/90 values. Numbers in bold include isolates with MIC < value shown; numbers in italic include isolates with MIC > the highest concentration tested. The solid vertical lines indicate the EUCAST breakpoint defined for ciprofloxacin resistance.¹ No EUCAST breakpoint defined.

32nd European Congress of Clinical Microbiology & Infectious Diseases (ECCMID) 23–26 April 2022 | Hybrid Meeting | Lisbon, Portugal and Virtual

ate population/source

lian (IQR) patients' age: 63 (45–78) years emale (n=393; 85.4%) nale (n=67: 14.6%)

- /IIC_{50/90} gepotidacin: **2/4 mg/L**
- /IIC_{50/90} ciprofloxacin: **0.016/>2 mg/L**
 - o ESBL-producers: >2 mg/L
- /IIC_{50/90} gepotidacin in challenging isolates:
 - ESBL-producers: 2/4 mg/L
 - Ciprofloxacin^R isolates: 2/4 mg/L

Promising *in vitro* activity of gepotidacin against *E. coli* isolates from urine, including ESBL-producing and ciprofloxacin-resistant isolates